Technical Notes

Synthesis of Trifluoromethanesulfonic Acid from CHF₃

Sudip Mukhopadhyay,[†] Alexis T. Bell,^{*,†} R. Vijay Srinivas,[‡] and Gary S. Smith[‡]

Department of Chemical Engineering, University of California, Berkeley, California 94720-1462, and Atofina Chemicals, Inc. King of Prussia, Pennsylvania 19406, U.S.A.

Abstract:

Trifluoromethane is transformed to trifluoromethanesulfonic acid (TFMSA) at low temperature in a liquid-phase reaction in a strong acid such as fuming sulfuric acid as well as in a strong basic solution such as *t*-BuOK/DMF.

Introduction

Trifluoromethanesulfonic acid (TFMSA), also known as triflic acid, is a strong acid with high thermal stability and resistance to oxidation and reduction.¹ It is widely used as a catalyst in the polymer, fuel, pharmaceutical, and sugar industries. There are also recent indications that it would be a superior electroplating agent. The current commercial process for producing TFMSA, which involves the electrochemical fluorination of CH₃SO₂Cl, is expensive.² Alternative routes involve expensive raw materials such as $CF_3-S-S-CF_3$ which is oxidized with K₂S₂O₈ or H₂O₂ to TFMSA.³ Cost intensive, low-yield processes have been reported for the synthesis of TFMSA starting from CF₃Br and CF₃I using stoichiometric amount of a reducing agent such as Zn.⁴

CHF₃ is a byproduct of the fluorochemical industry and is available in large quantities at a very low price. Prakash et al. have recently reported a novel method for synthesizing trimethyl(trifluoromethyl) silane (CF₃-TMS) from CHF₃;⁵ however, there is no report of synthesizing TFMSA directly from CHF₃. Here, we will show that CHF₃ can be functionalized to TFMSA in highly acidic as well as highly basic media. Our initial approach was based on recent studies by Sen et al.⁶ and by us,⁷ which have shown that CH₄ can be

- (2) (a) Simons, J. H. Fluorine Chemistry; Simons, J. H., Ed.; Academic Press: New York, 1950; Vol. 1, p 401. (b) Simons, J. H. Ind. Eng. Chem. 1947, 39, 236. (c) Burdon, J.; Tatlow, J. C. Adv. Fluorine Chem. 1960, 1, 129.
- (d) Nagase, S. *Fluorine Chem. Rev.*, **1967**, *1*, 177. (e) For the production of CH₃SO₂Cl from methane, see: Mukhopadhyay, S.; Zerella, M.; Bell, A. T.; Srinivas, R. V.; Smith, G. S. *Chem. Commun.* **2004**, *4*, 472.
 (3) (a) Bielefeldt, D.; Marhold, A. U.S. Patent 505971, 1991. (b) Biirefueruto,
- (a) Bielefeldt, D.; Marnold, A. U.S. Fatent 505971, 1991. (b) Binelderulo,
 D.; Maruhoruto, A. JP 63258844, 1988. (c) Schreyer, G.; Geiger, F.; Hensel,
 J. U.S. Patent 4,239,696, 1980.

(5) (a) Surya Prakash, G. K.; Hu, J.; Olah, G. A. J. Org. Chem. 2003, 68, 4457. (b) Surya Prakash, G. K.; Hu, J.; Olah, G. A. Org. Lett. 2003, 5, 3253.

660 • Vol. 8, No. 4, 2004 / Organic Process Research & Development Published on Web 06/11/2004

sulfonated with SO₃ in fuming sulfuric acid to produce MSA in high yield, using $K_2S_2O_8$, CaO₂, and urea $-H_2O_2$ and RhCl₃ combinations as free radical initiators.⁷ Since the C-H bond energy of CHF₃ is similar to that of CH₄, we reasoned that CHF₃ might be activated for sulfonation in a manner similar to that for CH₄.

In a typical reaction (Scheme 1), CHF₃ (650 psig) is reacted with SO₃ (21 mmol) in fuming sulfuric acid (5.67 g) for 12 h in the presence of a small amount of initiator, urea $-H_2O_2$ (0.4 mmol) and a promoter RhCl₃ (0.1 mmol) at 65 °C. The reaction mixture was analyzed by ¹⁹F NMR to identify and quantify CF₃SO₃H (chemical shift is -15.6 with respect to trifluorotoluene). D₂O was used as the NMR solvent in a capillary. Only, 2.5% of the initial SO₃ was converted to CF₃SO₃H using the urea $-H_2O_2$ and RhCl₃ combination. Over 400 reactions were performed to increase the yield without success.

The problem of low yield is understood on the basis of this proposed mechanism similar to that previously proposed for methane activation (reactions 1-4).⁷ The initiator abstracts a hydrogen atom from CHF₃ to generate CF₃• which then reacts with SO₃ to form CF₃SO₃•. This species then can react with CHF₃ to form the product, TFMSA, and another CF₃• radical. Termination of the radical chain can occur via the reaction of two CF₃• radicals to generate C₂F₆, as shown in reaction 4. The observation of C₂F₆ in the headspace suggests that chain termination occurs rapidly, thereby limiting the production of TFMSA.

$$CHF_3 + I \bullet = CF_3 \bullet + IH \tag{1}$$

$$CF_3 \bullet + SO_3 = CF_3 SO_3 \bullet \tag{2}$$

$$CF_3SO_3 \bullet + CHF_3 = CF_3SO_3H + CF_3 \bullet$$
(3)

$$CF_3 \bullet + CF_3 \bullet = C_2 F_6 \tag{4}$$

When the reaction was performed with SO_2Cl_2 (21 mmol) instead of SO_3 , about 3% of SO_2Cl_2 converted to

^{*} To whom correspondence should be addressed. E-mail: bell@ cchem.berkeley.edu.

[†] University of California. [‡] Atofina Chemicals, Inc.

⁽¹⁾ Howells, R. D.; McCown, J. D. *Chem. Rev.* **1977**, *77*, 69.

⁽⁴⁾ Walkselman, C.; Trodeux, M. Bull. Soc. Chim. Fr. 1986, 6, 868.

⁽⁶⁾ Basickes, N.; Hogan, T. E.; Sen, A. J. Am. Chem. Soc. 1996, 118, 13111.
(7) (a) Lobree, L. J.; Bell, A. T. Ind. Eng. Chem. Res. 2001, 40, 736. (b) Mukhopadhyay, S.; Bell, A. T. Ind. Eng. Chem Res. 2002, 41, 5901. (c) Mukhopadhyay, S.; Bell, A. T. Org. Process Res. Dev. 2003, 7, 161. (d) Mukhopadhyay, S.; Bell, A. T. Org. Process Res. Dev. 2003, 42, 1019. (e) Mukhopadhyay, S.; Bell, A. T. Angew. Chem., Int. Ed. 2003, 42, 1019. (e) Mukhopadhyay, S.; Bell, A. T. Org. Process Res. Dev. 2003, 7, 754. (g) Mukhopadhyay, S.; Bell, A. T. J. Am. Chem. Soc. 2003, 125, 4406. (h) Zarella, M.; Mukhopadhyay, S.; Bell, A. T. Org. Lett. 2003, 5, 3193. (i) Mukhopadhyay, S.; Bell, A. T. Chem. Commun. 2003, 1590.

Scheme 1. Direct reaction of CHF₃ with SO₃ in fuming sulfuric acid

CHF₃ + SO₃
$$\xrightarrow{\text{Urea-H}_2O_2, \text{RhCl}_3}$$
 CF₃SO₃H
H₃SO₄ CF₃SO₃H

Scheme 2. Direct reaction of CHF₃ with SO₂Cl₂ in fuming sulfuric acid

$$CHF_3 + SO_2Cl_2 \xrightarrow[65^{\circ}C, 12 h]{Urea-H_2O_2, RhO_3} CF_3SO_2Cl + HCl \\ \xrightarrow{65^{\circ}C, 12 h}{H-SO_4}$$

Scheme 3. Direct reaction of CHF_3 with Ph-S-S-Ph in DMF

$$CHF_{3} + Ph-S-S-Ph + t-BuOK + \xrightarrow{30^{\circ}C, 12 h} CF_{3}SPh + PhSK + t-BuOH$$
$$DMF$$

CF₃SO₂Cl, which could then be transformed to CF₃SO₃H by reaction with water (Scheme 2). Analysis of the reactor headspace showed the presence of C_2F_6 and CF₃Cl. These products are most likely formed via chain-termination processes involving the reaction of CF₃• radicals with each other radical or with a chlorine atom. The reaction, 2CHF₃ = $C_2F_6 + H_2$ is not thermodynamically favourable; however, the presence of an oxygen source derived from the radical initiator makes the reaction favourable, i.e., $2CHF_3 + \frac{1}{2}O_2 = C_2F_6 + H_2O$.

The low yield obtained in an acidic medium motivated us to consider CHF₃ activation in a highly basic medium. This approach was stimulated by the recent work of Prakash et al. on the synthesis of CF₃-TMS. The hydrogen on CHF₃ is acidic and can be removed by reaction with a strong base such as *t*-BuOK in DMF. Thus, CHF₃ was reacted with Ph-S-S-Ph in DMF⁸ in the presence of *t*-BuOK. CF₃-S-Ph ($\delta = +19.9$) was obtained in moderate yield (Scheme 3). This product was then oxidized with a mixture of HCl and H₂O₂ to CF₃SO₃H ($\delta = -15.8$). The main byproduct was CF₃SO₂Ph ($\delta = -11.9$).

Table 1 shows the effect of different process parameters on the conversion of CHF₃ to CF₃-S-Ph by the reaction of CHF3 and Ph-S-S-Ph in the presence of t-BuOK as the base (Scheme 3). Since DMF is unique in its ability to stabilize CF_3^{-} , it was used as the solvent.⁸ Increasing the CHF₃ pressure from 50 psig to 450 psig increased the conversion of CHF₃. However, the selectivity to CF₃SPh decreased with increasing CHF₃ pressure. It was observed that the temperature has a predominant role on the conversion and selectivity. The maximum conversion (53%) and selectivity to CF_3SPh (16%) were obtained at 30 °C (Table 2, entries 5–7). Another parameter affecting the progress of the reaction is the mole ratio of *t*-BuOK to Ph-S-S-Ph (Table 2, entries 8-11). The maximum conversion and selectivity were obtained using a molar ratio at 1:5.

In the second step the CF₃SPh was oxidized to CF₃SO₃H using a mixture of HCl and H₂O₂ (Scheme 4). This "chlorine/water" oxidation (2HCl + H₂O₂ \rightarrow Cl₂ + 2H₂O) was

Table 1. Effect of different parameters on the CF_3SPh synthesis^{*a*}

entry	parameter	conv of CHF ₃ , %	selectivity to CF ₃ SPh, %
1	CHF ₃ , 50 psig	2	63
2	250 psig	9	54
3	350 psig	12	53
4	450 psig	14	48
5	temp, 30 °C	16	53
6	46 °C	12	50
7	55 °C	11	48
8	t-BuOK:PhSSPh 1:1	7	42
9	1:1.5	10	48
10	1:2	13	50
11	1:5	16	53

 a Standard reaction conditions (unless otherwise stated): CHF₃, 350 psig (0.08 mol); *t*-BuOK, 1.6 g (0.0143 mol); PhSSPh, 3.42 g (0.0214 mol); temperature, 46°C; time, 16 h.

Table 2. Effect of molar ratio of HCl to H_2O_2 on the oxidation of CF₃SPh to CF₃SO₃H^{*a*}

entry	molar ratio of HCl/H ₂ O ₂	conv of CF ₃ SPh, %	selectivity to CF ₃ SO ₃ H, %
1	2:1	46	6
2	3:1	53	9
3	5:1	59	9
4	5:2	66	12
5	7:3	73	16

 a Reaction conditions: CF_3SPh, 1.12 mmol; temperature, 53 °C; time, 6 h; solvent, water, 10 mL; TBAC, 0.05 g.

Scheme 4. Direct oxidation of CF₃SPh with HCl and H₂O₂

$$CF_3$$
-S-Ph $\xrightarrow{HCVH_2O_2}$ CF_3SO_3H
Water

Scheme 5. Direct reaction of CHF_3 with S and subsequent oxidation

$$CHF_{3} \xrightarrow{(i) S, t-BuOK} CF_{3}SO_{3}F_{3} \xrightarrow{(ii) HCl/H_{2}O_{2}} Vater$$

performed at 53 °C for 6 h using 1.12 mmol of CF₃SPh in water (total 10 mL). A phase-transfer catalyst (PTC) such as tetrabutylammonium chloride (TBAC), 0.05 g was used to enhance the rate of the biphasic reaction.⁹

Table 2 shows the effect of different molar ratios of HCl to H_2O_2 on the rate of oxidation of CF₃SPh to CF₃SO₃H. It was observed that when the ratio was increased from 2 to 7 the conversion of CF₃SPh increased from 46 to 73% (Table 2, entries 1–5). The selectivity to TFMSA also increased from 6 to 16. The main byproducts were CF₃SOPh and CF₃SO₂Ph.⁵

In a simpler approach, sulfur (S) powder (0.02 mol) was reacted with CHF₃ (0.08 mol) in DMF (Scheme 5) in the presence of *t*-BuOK (0.01 mol) and ZnO (0.005 mol) at 46 °C. Presence of a small amount of ZnO or MgO was necessary, as in their absence no reaction of CHF₃ with Soccurred. A number of products were formed which are

⁽⁸⁾ DMF is used as a solvent as it is known in the literature that it helps to stabilize the CF₃⁻ anion in solution by complex formation, see Russel, J.; Roques, N. *Tetrahedron*, **1998**, *54*, 13771.

⁽⁹⁾ Handbook of Phase transfer catalysis (Ed Sasson, Y.; Newmann, R.), Chapman & Hall, N. Y., 1997.

difficult to identify. They are possibly of the general formula CF_3S_n . However, when the mixture was oxidized with HCl and H_2O_2 , all the peaks disappeared and a new peak corresponding to CF_3SO_3H appeared, although in low yield (1.5% based on CHF_3).

In conclusion, we have developed a low-temperature reaction protocol to activate CHF_3 in acidic as well as in basic medium. The yields of triflic acid in both media are low. In acidic medium the low conversion may be due to the coupling of two CF_3 • radicals to form C_2F_6 , a process that is believed to be enhanced by the presence of an oxidant, the radical initiator. In basic medium CHF_3 can be transformed to CF_3O_3H via a two-step process. The work

presented here offers new opportunities for the conversion of CHF_3 to useful products.

CAUTION: Most of the compounds mentioned in this work are toxic and highly odorous; therefore, the entire work should be done inside a well-maintained hood.

Acknowledgment

This work was supported by a grant from ATOFINA Chemicals, Inc.

Received for review April 10, 2004.

OP040007R